برترین وبلاگ ها

معرفی برترین وبلاگ ها

برترین وبلاگ ها

معرفی برترین وبلاگ ها

بررسی انواع کم شنوایی از جمله وزوزگوش و استفاده از سمعک را در این مقاله به طور مفصل توضیح می دهیم

۳۱ مطلب در ارديبهشت ۱۳۹۹ ثبت شده است

  • ۰
  • ۰

Poth و همکاران (2001)، استفاده از نویز عرض باند (BBN) را همراه با فواصل سکوت بعنوان محرک در تحقیق در مورد پردازش زمانی در ABR، توصیف کردند.

مطالعة الکتروفیزیولوژیک gap detection با noise burst ادامة تجربیات کلینیکی انجام شده در مدل‌های متفاوت حیوانی بود. محرک عبارت بود از noise burstهای عریض باند، 50 میلی‌ثانیه‌ای که با یک دورة سکوت که دیرش آن از 4 تا 64 میلی‌ثانیه تفاوت می‌کرد، همراه می‌شد. این محرک، قابل مقایسه با محرکی است که در ارزیابی سایکوفیزیکی «وضوح زمانی» به کار می‌رود.

Poth و همکاران (2001)، گزارش کردند که دامنه‌های ABR کاهش یافت و در گروهی از افراد مسن‌تر (بیش از 60 سال)، درصدی از افراد که پاسخهای قابل اندازه‌گیری داشتند، تقلیل یافت. به عبارت دیگر فواصل سکوت طولانی‌تری برای ایجاد ABR طبیعی در افراد پیرتر، لازم بود.

 

«تحریک Stacked ABR»

دکتر Don و همکارانش در انستیتو گوش هاوس، روش Stacked ABR را به منظور تشخیص ضایعات ورای حلزونی بویژه تومورهای آکوستیک کوچک با دقت و حساسیت بیشتر نسبت به محرک مرسوم کلیک، ایجاد کردند. این روش، نتیجة تحقیقات قبلی در مورد تاثیرات، پوشش بالاگذر همان سویی بر «زمانهای پاسخ حلزونی» یعنی فاصلة موج در حال حرکت و سرعت آن، در طول غشای قاعده‌ای بود. توصیف روش Stacked ABR را به صورت منطقی می‌توان در مورد عوامل تحریک، در فصل بعدی در روش آنالیز ABR ملاحظه کرد. (فصل 8) یا حتی، در خلاصه کاربردهای کلینیکی ABR در گروههای بزرگسال آن را دید (فصل 10) در ادامه، مروری بر روشهای کسب پاسخ از مناطق فرکانسی مختلف که در روش Stacked ABR به کار رفته خواهیم داشت.

عملکرد کلینیکی روش Stacked ABR در پاتولوژی شنوایی ورای حلزونی، و فروش سمعک دیگر عناوین کلینیکی، (مثلاً بیماری منییر) در فصل 10 توضیح داده شده است.

برای توجه کامل‌تر به روشهای derived – band در ABR Stacked جهت اطمینان از اینکه محرک، وابسته به فرکانس است، خواننده می‌تواند اطلاعات مفیدی در مورد استراتژی‌های پوشش همان سویی را در مقدمة فصل 8 بیابد.

محرک کلیک، که برای برانگیختن ABR به کار می‌رود، شامل انرژی در یک منطقة وسیع فرکانسی است، لیکن پاسخ، اغلب توسط فعالیت مربوط به محرک، در مناطق فرکانس بالای حلزون و بالطبع رشته‌های آوران عصب شنوایی که این مناطق را عصب دهی می‌کنند، ایجاد می‌شود.

  • متخصص شنوایی سنجی
  • ۰
  • ۰

Poth و همکاران (2001)، استفاده از نویز عرض باند (BBN) را همراه با فواصل سکوت بعنوان محرک در تحقیق در مورد پردازش زمانی در ABR، توصیف کردند.

مطالعة الکتروفیزیولوژیک gap detection با noise burst ادامة تجربیات کلینیکی انجام شده در مدل‌های متفاوت حیوانی بود. محرک عبارت بود از noise burstهای عریض باند، 50 میلی‌ثانیه‌ای که با یک دورة سکوت که دیرش آن از 4 تا 64 میلی‌ثانیه تفاوت می‌کرد، همراه می‌شد. این محرک، قابل مقایسه با محرکی است که در ارزیابی سایکوفیزیکی «وضوح زمانی» به کار می‌رود.

Poth و همکاران (2001)، گزارش کردند که دامنه‌های ABR کاهش یافت و در گروهی از افراد مسن‌تر (بیش از 60 سال)، درصدی از افراد که پاسخهای قابل اندازه‌گیری داشتند، تقلیل یافت. به عبارت دیگر فواصل سکوت طولانی‌تری برای ایجاد ABR طبیعی در افراد پیرتر، لازم بود.

 

«تحریک Stacked ABR»

دکتر Don و همکارانش در انستیتو گوش هاوس، روش Stacked ABR را به منظور تشخیص ضایعات ورای حلزونی بویژه تومورهای آکوستیک کوچک با دقت و حساسیت بیشتر نسبت به محرک مرسوم کلیک، ایجاد کردند. این روش، نتیجة تحقیقات قبلی در مورد تاثیرات، پوشش بالاگذر همان سویی بر «زمانهای پاسخ حلزونی» یعنی فاصلة موج در حال حرکت و سرعت آن، در طول غشای قاعده‌ای بود. توصیف روش Stacked ABR را به صورت منطقی می‌توان در مورد عوامل تحریک، در فصل بعدی در روش آنالیز ABR ملاحظه کرد. (فصل 8) یا حتی، در خلاصه کاربردهای کلینیکی ABR در گروههای بزرگسال آن را دید (فصل 10) در ادامه، مروری بر روشهای کسب پاسخ از مناطق فرکانسی مختلف که در روش Stacked ABR به کار رفته خواهیم داشت.

عملکرد کلینیکی روش Stacked ABR در پاتولوژی شنوایی ورای حلزونی، و فروش سمعک دیگر عناوین کلینیکی، (مثلاً بیماری منییر) در فصل 10 توضیح داده شده است.

برای توجه کامل‌تر به روشهای derived – band در ABR Stacked جهت اطمینان از اینکه محرک، وابسته به فرکانس است، خواننده می‌تواند اطلاعات مفیدی در مورد استراتژی‌های پوشش همان سویی را در مقدمة فصل 8 بیابد.

محرک کلیک، که برای برانگیختن ABR به کار می‌رود، شامل انرژی در یک منطقة وسیع فرکانسی است، لیکن پاسخ، اغلب توسط فعالیت مربوط به محرک، در مناطق فرکانس بالای حلزون و بالطبع رشته‌های آوران عصب شنوایی که این مناطق را عصب دهی می‌کنند، ایجاد می‌شود.

  • متخصص شنوایی سنجی
  • ۰
  • ۰

ABR با یک noise burst اولیه با دیرش بزرگتر از 15 ms برانگیخته می‌‌شود، و سپس در طی چند میلی ثانیه دومین noise burst به عنوان محرک برای ABR دوم ارائه می‌شود. فاصلة سکوت (gap) معمولاً در گسترة 0 MS تا بیش از 100 ms، ممکن است متفاوت باشد.

یک فرض اولیه، در مورد اندازه‌گیری gap detection این است که ABR متعلق باتری سمعک ویدکس به دومین noise burst اگر، فاصلة سکوت کاملاً توسط سیستم شنوایی پردازش شده باشد، (یعنی اینکه gap برابر با فاصلة لازم برای وضوح زمانی است یا بیشتراز آن است) تغییر نخواهد کرد. داده‌های هنجار، برای ABR برانگیخته شده توسط noise burst که پس از noise burst دیگر ارائه شده (یعنی آستانة gap detected نرمال تعریف شده) جمع‌آوری شده‌اند.

تغییرات در زمان نهفتگی موج V، یا عدم وجود ABR، برای محرکی که پس از یک فاصلة سکوت که توسط افراد طبیعی قابل تشخیص است یعنی دیرش gap برای عدم تداخل با ABR به اندازة کافی طولانی است، همراه با نقائصی در پردازش شنیداری زمانی است.

تغییرات طبیعی در ABR با دیرش‌های کوتاه‌تر gap شامل طولانی‌شدن زمان نهفتگی و کاهش دامنه می‌شود. در افراد جوان نرمال با دیرش gap به کوتاهی، 8 میلی‌ثانیه، یک ABR قابل تشخیص وجود دارد، در حالیکه هنگامیکه gap silent، به کوتاهی 4 میلی‌ثانیه است، ممکن است ABR حضور نداشته باشد.

Werner و همکاران، کاربرد ABR در ارزیابی الکتروفیزیولوژیک پردازش زمانی، با روش gap detection، را مورد تحقیق قرار دادند. افراد مطالعة آنها 33 فرد جوان و 30 نوزاد بودند، از این 30 نوزاد، 10 نوزاد سه ماهه و 20 نوزاد شش ماهه بودند، محرک، یک جفت نویز 15 میلی‌ثانیه‌ای عریض باند بود، که با فاصله‌های سکوت، از 0 تا 125 میلی‌ثانیه از هم جدا می‌شدند. در یک تجربه، Werner و همکاران (2001) دریافتند که آستانة gap detection با ABR (2.4ms) به صورت معدل با آستانه‌هایی که از طریق، روش‌های مرسوم سایکوفیزیکی به دست می‌آمد برابر بود (2.9 ms). در تجربة دیگر، محققین این کار را در افرادی با کاهش شنوایی فرکانس بالای شیبدار و آستانه‌های gap detection (آستانه‌های طولانی‌تر، برای فواصل سکوت) را با ABR (12.7ms) و روش‌های سایکوفیزیکی (10.7 ms) به دست آوردند. در مقابل، داده‌هایی که از نوزادان ثبت شد، تفاوتی را در آستانه‌های gap detection در ارزیابی با روشهای فیزیولوژیک و سایکو فیزیکی نشان داد. وضوح زمانی Temporal Resolution در نوزادان نابالغ بود. (فواصل سکوت طولانی‌تری برای تشخیص لازم بود). این داده‌ها با روش‌های سایکوفیزیکی به دست آمد، در حالیکه، افزایش سن، بر آستانة gap در ABR تاثیر نگذاشت. مطابق نظر Werner و همکاران، (2001)، این یافته‌ها «پیشنهاد می‌کنند که عدم بلوغ در سطح ساقة مغز، مسئول عملکرد تشخیص فاصله gap detection ضعیف در آنها نیست!»

  • متخصص شنوایی سنجی
  • ۰
  • ۰

این نشان می دهد ه اطلاعات بدست آمده از چندین هامونیک در تعیین نواک پایین ترکیب یا در هم ادغام می شوند. این کار می تواند به منجر به تشخیص صریح نواک شود. تغییرات در میزان تکرار که حدود 0.2 درصد است قیمت سمعک نامرئی می تواند برای فرکانس های اساسی در محدوده ی 100 تا 400 هرتز اتفاق بیفتند به شرطی که هامونیک های پایین وجود داشته باشند. نواک یک تن پیچیده ممکن است از هامونیک های نامنظم بالا نیز استخراج شود. همانطور که در تصویر 13.18 نشان داده شده است، شکل موج ها در جاهایی از پردهی اصلی که مربوط به هامونیک های بالا هستند، پیچیده هستند اما میزان تکراری برابر با صدای فرکانس اساسی دارند یعنی 200 هرتز. برای نورون های CF که مربوط به هامونیک های بالا هستند، تکانه های عصبی توسط بالاترین اوج شکل موج برانگیخته می شوند یعنی توسط شکل موج های بالا که بسیار نزدیک به حالت ماکسیمم هستند. بنابراین، تکانه های عصبی توسط زمان های دوره ای صدا از هم جدا می شوند. برای مثال، در تصویر 13.18 ورودی دارای میزان تکرار 200 دور در هر ثانیه است و دوره 5ms است. فواصل زمانی بین سنبله عصبی به صورت مضربی صحیح از 5و10و15و20و... تعیین می شود. نواک ممکن است از طریق این فواصل زمانی تعیین شود. در این مثال، فواصل زمانی مضربی از 5ms هستند بنابراین، نواک 200 هرتز است.

شواهد تجربی نشان می دهند که نواک می تواند هم از هامونیک بالا و هم هامونیک پایین استخراج شود. معمولا، هامونیک پایین، نواک پایین واضحی را ارائه می دهد و در تعیین نواک پایین بسیار مهم تر از هامونیک های نامنظم بالا است. این امر را اصل غالب می گویند. وقتی یک تن پیچیده دارای هامونی های زیادی است، نواک معمولا با گروه کوچکی از هامونیک های پایین تعیین می شود. همچنین، پردازش این تغییرات در میزان تکرار تن های پیچیده برای تن هایی بهتر است که تنها دارای هامونیک های پایین هستند تا بالا.

با این حال، نواک پایین می تواند هنگامی که تنها هامونیک های بالای نامنظم وجود دارند شنیده شوند. اگرچه، این نواک به وضوح وقتی نیست که هامونیک پایین داشته باشیم، اما به اندازه کافی واضع است که این امکان را به ما بدهد تا فواصل موسیقیایی و ملودی های ساده را تشخیص دهیم.

عده ای از محققان نظریه هایی را مطرح کرده اند که مکانیسم های مکانی و زمانی نقشی در آن ایفا می گنند که به آن نظریه ی طیفی-زمانی می گویند. این نظریه ها فرض را بر این می گذارند که اطلاعات هامونیک های پایین و بالا در تعیین نواک موثر هستند. مکان اولیه تحلیل در حلزون گوش صورت میگیرد و الگوی زمان خوشه های عصبی که برانگیخته می شوند مورد بررسی قرار میگیرند.

  • متخصص شنوایی سنجی
  • ۰
  • ۰

صامِت ، هَم‌خوان یا حرفِ بی صدا آوایی است که به تنهایی تلفظ نمی‌شود و به هنگام تولید (در گذر از اندام‌های گویایی) به مانع برخورد می‌کند و در نتیجه آوای تازه‌ای به آن افزوده می‌شود  . صامت صدایی  است که با بسته شدن کامل یا جزئی از مجرای صوتی قیمت سمعک نامرئی فوقانی ایجاد می‌گردد، مجرای صوتی فوقانی به قسمتی از مجرای صوتی گفته می‌شود که بالاتر از حنجره قرار دارد.

 زبان فارسی 23 صامت دارد که عبارتند از:

ء (ع) - ب - پ - ت (ط) - ج - چ - خ - د - ر - ز (ذ ، ظ ، ض) - ژ - س (ث ، ص) - ش - ق (غ) - ف - ک - گ - ل - م - ن - و - ه - ی.

حرف‌های قراردادی که برای همخوان‌های زبان فارسی نهاده شده‌است :

ب (انفجاری، انسدادی)

پ (انفجاری، انسدادی)                         ت، ط (انفجاری)

ث، س، ص (سایشی)                           ج (انفجاری)

چ (انفجاری)                                      ح، هـ (سایشی)

خ (سایشی)                                        د (انفجاری)

ذ، ز، ض، ظ (سایشی)                            ر (غلتان)

ژ (سایشی)                                         ش (سایشی)

ع، ء (همزه)، الف (انفجاری)                     غ، ق (انفجاری)

ف (سایشی)                                       ک (انفجاری)

گ (انفجاری)                                      ل (روان)

م (خیشومی)                                       ن (خیشومی)

و (سایشی)                                         ی (روان)

همخوانهایی که در سطح گفتار روزمره شنیده می­شوند که فرکانس بالا و شدت متوسط دارند توسط واکه­ها یا اصوات کم فرکانس یا اصوات مدوله شده منتقل می­شوند. بعبارتی واکه­ها حس فرکانس و طنین را در همخوانها بوجود می­آورند زیرا صدای س که به صورت جریان های سایشی از فواصل دندانها تولید می­شود اگر با واکه­ اِ همراه باشد بعنوان صدای سِ شنیده می­شود و به همین ترتیب حس فرکانسی آن با صدای سَ، سُ متفاوت خواهد بود. حس فرکانسی یا طنین ایجاد شده در یک مجموعه­ی ترکیبی­اند همخوان و واکه به اصطلاح Virtual Pitch یا طنین واقعی" نامیده می­شود. اگر در حرفهای کسی که سرگرم گفتگو با شماست فقط به اصوات گفتارش توجه کنید چه خواهید شنید؟ جواب این است که زنجیره‌ای از طبقات صوتی جداگانه خواهید شنید که واج نام دارد. هر واج معرف طبقه‌ای از اصوات است که به لحاظ فیزیکی متفاوتند. اما به صورت صدای واحدی ادراک می‌شوند. آواهای یک زبان ( واکه یا صدادار و یا همخوان یا بی صدا ) واج نامیده می شود .

  • متخصص شنوایی سنجی
  • ۰
  • ۰

خدمات و بیمه سمعک

Cox ، Alexander ، Taylor  وGrey ( 1997) به دو مطالعه ای اشاره نمودند که گزارش می کرد بر اساس آزمون درجه بندی بلندی با استفاده از محرکات باریک باند ، خانم های با شنوایی هنجار ، بلندی مربوط به سطح معینی را بلندتر بیمه سمعک  از آقایان با شنوایی هنجار قضاوت نمودند .

در هردو مطالعه تفاوت بین توابع بلندی در حد 6dB بود . نیز در یک تحقیق اعلام نمودند که سطح راحت شنیداری ( MCL ) برای گفتار در آقایان با شنوایی هنجار در حد قابل ملاحظه ای ( 6dB ) بیشتر از خانم های با شنوایی هنجار بود .

بر طبق مطالعات به نظر می رسد که حداقل در اطراف MCL ، خانم ها ترجیح می دهند به صدای آرامتری نسبت به آقایان گوش دهند . اگرچه تمام یافته های تحقیقات ، حایز تفاوت های معنی دار آماری نیست اما این موضوع در روش NAL-NL2 درنظر گرفته شده است . بر اساس داده های تصویر 2 ، بهره کلی برای آقایان 1dB افزایش و برای خانم ها 1dB کاهش می یابد . ( نسبت به بهره کلی تجویزی که توسط NAL-NL2 تصحیح شده است ) ، این تنظیم بهره ، مستقل از فرکانس و سطح ورودی است .

 

تاثیر تجربه :

به طور میانگین ، کاربران جدید سمعک نسبت به کاربران با تجربه حدودا2.2 dB بهره کمتری را ترجیح می دهند . تفاوتی که بر اساس آزمون t معنی دار است ( t= 3.48 , p=0.0006 ) . با نگاه دقیق در تصویر 2 دیده می شود که  تجربه ، بیشترین تاثیر را در کم شنوایی متوسط دارد تا کم شنوایی ملایم .

نوع سمعک :  Siemens Music Pro ، یک سمعک دیجیتال ، دارای 3 حافظه ، دو کانال تراکمی و ولوم کنترل .در همه افراد هر سه حافظه تنظیم شد . در یک حافظه تجویز بر مبنای NAL-NL1 ، حافظه دوم : NAL-NL1 با Low Freq Cut ( 32 مورد ) ، حافظه سوم : NAL-NL1 با High Freq Cut . 1 ، 4 و 13 ماه بعد از فیتینگ ، کاربران جدید برای ثبت REIG برنامه ترجیحی شان و حالت ولوم کنترل برای شنیدن کلی در محیط به کلینیک مراجعه نمودند . در کاربران با تجربه پاسخ مطلوب فقط 1 ماه بعد از فیتینگ ثبت شده و به عنوان مرجع استفاده می شد . در این مطالعه ( Keidser et al . 2008b ) ، کاربران جدید سمعک در حد  2.7 dB بهره کمتری را نسبت به کاربران با تجربه ترجیح دادند که البته به لحاظ آماری معنی دار نبود .

  • متخصص شنوایی سنجی
  • ۰
  • ۰

نمایندگی سمعک فوناک

برخی از کاربرد های بالینی گسیل های اصوات گوش 

در حال حاضر ، OAEها معتبرترین بخش مجموعه ی تست ها می باشند که برای تعیین محل ضایعات شنوایی است. کاربردهای بالینی TEOAEها و DPOAEها عبارتند از ارزیابی عملکرد حلزون ، آزمون افت شنوایی در نوزادان و تغییرات کوچک در عملکرد حلزون . به طور کلی ، OAEها به پاتولوژی حلزون حساس بوده بنابراین کاربردهای بالینی رو به افزایش است . OAEها به صورت گسترده به عنوان آزمایش محل ضایعه در نظر گرفته می شوند .  برای مثال آن ها هم برای تشخیص اختلال حلزونی که توسط تومورهای عصب هشتم محصور شده و هم برای تشخیص اختلال حلزونی که با مننژیت همراه است ، مورد استفاده قرار می گیرند .  OAE ها که در بردارنده ی difficult – to – test subjects هستند به خوبی  همراه غربال گری شنوایی برای کودکانی که به آزمایش شونده پاسخ نمی دهند استفاده خواهند شد .محیط های صنعتی و مدارس به خاطر آسان بودن OAE ، خودشان برای غربال گری شنوایی OAE داوطلب می شوند .

آن ها می توانند در کاهش شنوایی پیش رونده تدریجی ، ototoxic ، جراحی گوش میانی و افت شنوایی ناشی از صدا دخالت داشته باشند . با این حال ، عدم وجود DPOAEها ممکن است نشان دهنده ی پاتولوژی گوش میانی یا داخلی باشد . این باید با تیمپانومتری بررسی شود . رابطه بین حضور DPOAEها با افت شنوایی ثابت نشده است اما سازگار با عملکرد وراء حلزونی   است .تایید الکتروفیزیولوژیک عملکرد شنوایی در مواردی که خطر مداخله ی نورولوژی وجود دارد مثل یرقان حاد در نوزادان باید مد نظر قرار گیرد . به طور کلی ، نوزادانی که در معرض ابتلا به اختلال شنوایی هستند ، هم باید آزمون های OAE و هم ABR را دریافت کنند . به صورت خلاصه ، وجود فعالیت OAE واقعی به این معنی است که حلزون دارای عملکرد طبیعی است . با این حال ، گوش میانی همانند پاتولوژی حلزون می تواند OAEها را مسدود (بلوکه) کند . این نیز مهم است که به یاد داشته باشید که هیچ رابطه ی دقیقی برای آستانه ی شنوایی مشخص نشده است . سطح دسی بلی که از پاسخ های OAE به دست می آید به صورت بالینی آموزنده نیست

آیا مزایای کاربردی از آزمون گسیل صوتی گوش وجود دارد ؟

تکنیک های اندازه گیری OAE چندین مزیت متمایز بیشتر از آزمون های ادیولوژیک سنتی دارند . تکنیک های هدف عبارتند از اول این که پاسخ های رفتاری از بیمار لازم نیست . دوم این که ، تست های OAE کارآمد هستند و می تواند در عرض چند دقیقه انجام شوند . سوم اینکه اندازه گیری OAE  غیرتهاجمی است و عبارتند از ارائه سیگنال و پاسخ OAE اجرا شده  از طریق یک کاوشگر کوچک که درجای خود توسط (ear tip) ایر تیپ در دسترس و نرم تشخیص داده می شود . چهارم این که مقادیر OAE بسیار حساس به وضعیت کلی عملکرد حلزون هستند و آن ها در آزمایش محل ضایعات برای تشخیص حسی (حلزون) از افت شنوایی عصبی سودمند است و در نهایت نشان می دهد که کسری ها در مهار سمت مقابل OAE ممکن است هدف دیگررا دنبال کنند 1 -  آزمون بالینی غیرتهاجمی برای اکتشاف فعال ، 2 - میکرومکانیسم های غیر فعال از سلول های مویی خارجی 3 - ارزیابی عصبی بالینی از مسیرهای شنوایی ساقه ی مغز و در کل خصوصا مسیر های فیبر وابران نزولی .

  • متخصص شنوایی سنجی
  • ۰
  • ۰

سطح نسبی شدت ها اثر قابل توجهی بر پاسخ  DPOAE دارد و به صورت قراردادی سطح f1 ممکن است برابر یا بزرگتر از سطح f2 باشد . در کاهش f1 به f2 هیچ مزیتی وجود ندارد . زمان رفت و برگشت فرکانس تکرار شده است و داده ها میانگین هستند . از آن جایی که بسیاری اطلاعات جمع آوری شده اند ، عدم خلوص (مرکب بودن اصوات ) در مقدار کاهش خواهد یافت و معلوم می شود که داده ی DPOAE در بالای سطح نویز ثابت باقی می ماند . به طور معمول پروتکل ها برای آزمون بالینی DPOAEها استفاده می شوند (شکل 8 – 13 ) . یک محدوده ی وسیع از فرکانس های تحریکی به راحتی به راحتی DPOAEها تولید می کنند ، اگرچه که آن ها برای اندازه گیری قابل اطمینان زیر 1000 Hz (به دلیل سر و صدا ) بسیار مشکل هستند . برخلاف TEOAEها ، اندازه گیری DPOAE بستگی به تاخیر زمان  DPOAE برای تعیینش ندارد بنابراین تکنولوژی در فرکانس های بالاتر موثر است . با این حال ، سطوح بالاتر تحریک مورد نیاز برای نگه داشتن ضبط کوتاه زمان ها است زیرا هر باند فرکانس باید به صورت جداگانه اندازه گیری شود . این به این معنی است که DPOAEها که حساسیت کمتری به اختلالات جزئی دارند ، منجر به افت شنوایی 19 تا      20 db splمی شوند. DPOAEها به شما توانایی تشخیص (ارزیابی) فرکانس های بالا می دهد ولی compromise (تراکم) روی حساسیت برای به دست آوردن سرعت است . ترکیب TEOAE که توسط DPOAE پیروی می شود دیدگاه جامعی از وضعیت حلزون فراهم می کند که به تنهایی توسط تکنولوژی حاصل نمی شود (حساسیت بالا ، سرعت و کارآیی فرکانس بالا ) .

آیا گسیل های صوتی گوش ممکن است ؟ 

OAEها نه تنها در تجزیه و تحلیل درستی از گوش فرد ارزشمند هستند ، هم چنین می توانند برای ارزیابی فعل و انفعالات بین دو گوش برای مهار (سرکوب) OAE پس از ارائه محرک اضافی به هر دو گوش یا گوش همان سمت یا گوش سمت مقابل مورد استفاده قرار گیرد . تعدادی از مطالعات انجام شده بر روی انسان در واقع نحوه ی مهار SOAEها ، TEOAEها و DPOAEها را که توسط محرک های صدا طرف مقابل صوت می گیرد شرح می دهد . اثرات مهاری وابران در انسان ها هم منطبق با مهار گسیل های حلزونی و هم فعالیت عصب هشتم در حیوانات است . حرکات مکانیکی سلول های مویی خارجی کنترل شده هستند ، اگرچه که مسیرهای وابران شنوایی از طریق سیستم زیتونی حلزونی است . از آن جایی که الیاف وابران داخلی زیتونی ترجیحا بر روی سلول های مویی خارجی ختم می شوند ، غالبا به این صورت است که ویژگی های پویای سلول های مویی خارجی حداقل توسط سیستم وابران داخلی نزولی تنظیم شده هستند. ( فصل 12 را ببیند ) . مهار وابران TEOAEها در واقع با کاهش در دامنه انتشار و یا تغییر زمان و یا تغییر فاز مشخص می شوند . مطالعات صورت گرفته بر روی حیوانات نشان می دهد که تحریک مستقیم وابران های داخلی ( از طریق جریان های الکتریکی دو قطبی ) باعث کاهش 20 تا 66 درصد در DPOAEها (2f1 – f2) می شود . تزریق حلزون مستقیم استیل کولین (همراه با مهارکننده های استیل کولین eserine) اثرات تحریک مستقیم وابران داخلی را که توسط تولید کوچک ولی کاهش های قابل توجهی در 2f1 – f2  DPOAE تقلید می کند . مهار 4 تا 6 db صدای فعال سمت مقابل DPOAE نقض کننده (surgical) الیاف وابران داخلی است که با میانه های ساقه ی مغز تقاطع می کنند . چنین آزمایشاتی بر این نظریه دلالت دارند که سلول های مویی خارجی پویا، تولید کننده ، عوامل مکانیکی مسئول برای تولید غیر خطی هایی (مثل DPOAEs) در داخل حلزون هستند .

  • متخصص شنوایی سنجی
  • ۰
  • ۰

نمایندگی سمعک سونیک

اعوجاج گسیل های صوتی گوش را تولید می کند  

علاوه بر این با استفاده از محرک زمان کوتاه ، OAEهای قوی می توانند در پاسخ دو محرک به صورت هم زمان تولید شوند ( f1 , f2) . این DPOAEها ویژگی های غیر خطی دارند . آن ها متناسب با ورودی زیاد نمی شوند و آن ها با محصولات اعوجاج افزایش می یابند . در حلزون ، محصولات اعوجاج از مدوله سازی متقابل (سمعک) دو صوت خالص به وجود می آیند(شکل 6 – 13 ) . محصول حلزون سیگنال مربوط به نمایندگی سمعک سونیک آهنگ است که در استخراج محرک صوت خالص موجود نیست (شکل 3 – 13 را ببینید ) . طبق قرارداد ، تن فرکانس کمتر به عنوان  f1 اولیه شناخته شده و سطح متناظرش L1 است و تن فرکانس بالاتر f2 با یک سطح متناظر L2 است . بزرگترین DPOAEهای ثبت شده در همه پستانداران در f1 – f22 رخ می دهد ، اگر چه DPOAEها در فرکانس های دیگر از جمله مربعی ( f2 – f1 2 و f1 – 2f23 ) و محصولات اعوجاج درجه دوم (f2 – f1) حاضر هستند . شدت محصول متفاوت مربعی (2f1 – f2) به طور معمول به عنوان شاخص وضعیت حلزون استفاده می شود . سطوح DPOAE 2f1 – f2 به طور سیستمیک با پارامترهای تن های اولیه درخواستی به صورت هم زمان ( f1 , f2) اندازه گیری می شود که شامل فرکانس های مطلق ، تفکیک فرکانس (f2/f1) ، سطح مطلق مقدماتی (L2 , L1) و تفاوت سطح (L1 – L2) می باشد . به طور معمول ، سطح تن اختلافی مربعی به عنوان تابعی از یکی از فرکانس های اولیه در DP – gram رسم می شود ( شکل 8 – 13 را ببینید ). اگرچه TEOAEها در بعضی حیوانات مثل موش صحرایی وجود ندارندبا وجود این به نظر می رسد تمام حیوانات DPOAEها را تولید کنند . در انسان ها ، سطح DPOAE 2f1 – f2  وقتی که نسبت f2/f1  تقریبا 1.22 باشد یا هنگامی که در سطوح بالا L1 – L2 = 0 db به L1 – L2 = 30 db   یا در سطوح تحریکی کم افزایش یابد بیشترین است . سطوح DPOAE  2f1 – f2 و کانال گوش سالم ممکن است بزرگتر از 20 db spl باشد . با این حال ، DPOAEهای معمولی کوچکتر هستند (  db5 –15 db  )  و معمولا 60 تا db70   کمتر از سطوح تحریکی هستند . به میزان قابل توجهی ، DPOAE مطلق یا کاهش یافته ، کاهش شنوایی را که توسط گوش میانی یا عوامل پاتولوژیک حلزون ایجاد شده نشان می دهد . به طور معمول probe یا کاوشگر شامل یک میکروفون کوچک و دو بلندگوی کوچک برای اندازه گیری  DPOAEها است ( نگاه کنید به شکل 6 – 13 ) . probe یا کاوشگر به صورت محکم (سفت) به داخل کانال گوش چسبیده است . برعکس TEOAEها ، DPOAE ها در حضور تن های اولیه (اصوات اولیه ) اندازه گیری می شوند . مقدار (اندازه گیری )DP – gram معمول متشکل از یکسری اندازه گیری های DPOAE در 2f1 – f2 با منحنی فرکانس محرک بین 1 و 6 کیلو هرتز است (شکل 7 – 13) . توافق کلی وجود دارد که DPOAEها در صورتی که نسبت فرکانس های تحریکی اولیه 1 : 2/1 و 1 : 3/1 باشند ، به آسانی تشخیص داده می شوند

  • متخصص شنوایی سنجی
  • ۰
  • ۰

انواع سمعک نامرئی

این جفت الکترودهای همان سویی و دگرسویی، آرایش های موربی را شکل می دهند (در شکل 8-6 نشان داده شده بود) که دو ضلع یک مثلث را شبیه سازی می کنند، قاعدۀ این مثلث آرایش الکترودی افقی است. فرآیند تفاضل، دخالت الکترودها را که در آرایش مورب، مشارکت دارند، حذف می کند (ورتکس یا پیشانی) و الکترودهای همسو و ناهمسو را از هر آرایش به عنوان الکترود inverting و non inverting  نگاه می دارد. این فرآیند را می توان به صورت ؟؟ اینگونه نشان داد:

 (F2 + Ai ) – (F2 + Ac) = Ai - Ac

Ac , Ai = الکترودهای همان سویی و دگرسویی هستند.

شاهد اینکه تفاضل موج حاصل از آرایش الکترودی دگرسویی از همان سویی، معادل موج حاصل از آرایش الکترودی افقی است در شکل 11-6 نمایش داده شده است. به این ترتیب، امواج واقعی و اشتقاقی در افراد، سالم و در بیماران با پاتولوژی CNS (صدمه به سر) مشابه هم هستند. یک فرآیند تفاضلی دیگر، که این بار عبارت است از تفاضل امواج حاصل از آرایش افقی واقعی از امواج واقعی اشتقاقی، (یا برعکس)، یک خط صاف ایجاد می کند.

این امر، برابر بودن دو شکل موج را تایید می کند. کاربرد عملی این مشاهده این است که اختصاص یک کانال دستگاه AER به ثبت آرایش افقی، در صورتیکه سیستم ارزیابی AEP، توانایی تفاضل دیجیتالی امواج را داشته باشد و نیز آرایش های الکترودی همان سویی و دگرسویی مورد استفاده قرار گرفته باشند، ضرورتی نخواهد داشت.

 

کاربرد روش های چند الکترودی در ثبت ABR:

از کدام آرایش الکترودی می بایست استفاده کرد؟ اغلب آرایش مرسوم به صورت انحصاری مورد اعتماد است. شاید به این دلیل قابل درک که کلینیسین ها، نسبت به دور شدن از روش ثبت ABR که پاسخ های کافی را برای بسیاری از بیماران در اختیار می گذارد، مقاومت می کنند. این استدلال خوبی برای استفاده از آرایش الکترودی مرسوم است اگر ABR تنها با یک کانال ثبت شود. اجزاء اصلی معمولاً مشاهده می شوند، و امواج زودرس مهم از نظر کلینیکی (بخصوص موج I)، افزایش می یابند انواع سمعک و علت هم ارتباط فازی برعکس بین الکترودهای non inverting , inverting است. از آنجا که بسیاری از دستگاهها ظرفیت دو کاناله دارند، ثبت روتین و همزمان ABR با دو کانال امروزه از نظر کلینیکی امکان پذیر است و به نظر می رسد که ارزشمند نیز هست.

کدام دو کانال می بایست به صورت روتین در ثبت ABR به کار گرفته شوند؟ بعضی محققین می گویند که آرایش الکترودی مرسوم بعلاوۀ آرایش الکترودی ورتکس (پیشانی) به غیر جمجمه ای دیگران، بیان می کنند که یک کانال به ثبت ورتکس به غیر جمجمه ای و کانال دوم به آرایش افقی، اختصاص داده شود. یک پروتکل ثبت همان سویی در مقابل دگرسویی نیز برای تسهیل تعیین موج I توصیه شده است. یک مزیت اضافه شده برای این دو روش ثبت اخیر، احتمال اشتقاق یک شکل موج افقی، با تفاضل موج دگرسویی از همان سویی است.

 

  • متخصص شنوایی سنجی